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What is ‘true’ about
the ‘ground truth’?



Semantic segmentation models play an important role in
medical imaging applications.

e.g. - segmenting lung nodules. Irregularly shaped or oversized nodules
are a strong indicator for lung cancer.

Standard Model







How to account for
structural uncertainty
In segmentation?



Existing uncertainty work is model-centric, producing
‘uncertainty of uncertainty’ (not designed for humans)

e Proposes modifications to the model
e Still training on standard maps
e Dominant paradigm in field
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Existing uncertainty work is model-centric, producing
‘uncertainty of uncertainty’ (not designed for humans)

Candidate Generation: infinite generation of possible segmentations
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Kohl, “A Probabilistic U-Net for Segmentation
of Ambiguous Images”



Contingent on sampling strategy?

What does variation mean?

How many candidates should I consider?
How do I make a judgement?



Existing uncertainty work is model-centric, producing
‘uncertainty of uncertainty’ (not designed for humans)

Continuous Maps: force non-discrete output
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Kohl, “A Probabilistic U-Net for Segmentation
of Ambiguous Images”



What do particular values mean?

Is the model bad or is the data hard?
What thresholds do I use?

How do I make a judgement?
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Model-centric
approaches disconnect
uncertainty from
human judgement.



We need to represent uncertainty explicitly with a
data-centric approach. Introducing Confidence Contours

Step 1 Step 2

Draw min Draw max
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Training models on Confidence Contours requires no

architectural modifications, unlike other methods

Standard Model

Standard ' ]

Modified Model

Model-Centric ' —

Data-Centric ' —

Standard Model

Training

Prediction
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Confidence Contours recenters the humans at both sides of
the uncertainty modeling pipeline

. :

Human
Interpreters

Human
Annotators

- Standard Model

Annotation Training Prediction



Human annotators
with

Human
Annotators

mark uncertainty in the image
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Models are simply trained by predicting two rather than one
segmentation maps; no bells & whistles needed
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Interpreters

Human
Annotators

Standard Model

Annotation Prediction
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All uncertainty information directly corresponds to human

annotations.
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What we designate the
‘ground truth’ shapes
downstream tasks and can
be strateqgically designed
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Abstract

Medical image segmentation modeling is a high-
stakes task where understanding of uncertainty is
crucial for addressing visual ambiguity. Prior work
has developed segmentation models utilizing prob-
abilistic or generative mechanisms to infer uncer-

tainty from labels where annotators draw a singu- @ Draw min @Draw max

lar boundary. However, as these annotations can-

not represent an individual annotator’s uncertainty, Figure 1: The two steps of the process for producing Confidence
models trained on them produce uncertainty maps Contours annotations, demonstrated on a sample from LIDC.

that are difficult to interpret. We propose a novel

Thank you!




User Study

e Recruited 45 students to annotate 600 images across 2 datasets
o LIDC: Lung Image Dataset Consortium (Pulmonary Nodule Segmentation)
o FoggyBlob: synthetic dataset simulating structural uncertainty

e Each image annotated with 3 standard and 3 Confidence Contours
e Two groups to counteract learning bias
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One CC can represent multiple standard annotations

e Significant reductions in underflow and overflow
e Significant reductions in disagreement between annotations

Original image Composited Single CC
standard




Annotators find CCs more demanding, but not by much

Dimension LIDC FoggyBlob
Singular ~ CC | Singular CC
Mental Demand 3.7 *49 33 *4.6
Physical Demand 277 33 39 3.7
Temporal Demand 42 *49 50 5.5
Performance 69 69 6.8 69
Effort 4.8 *5.7 50 5.1
Frustration 3.0 *4.2 2.7  *4.0

Table 3: Average annotator responses across six dimensions and two
datasets on the experience annotating using the singular and the CC
methods, evaluated on a 10 point scale (1="very low”, 10="very
high”). * indicates a statistically significant relationship, measured
with a relative ¢-test by annotator.



CC annotations give positive information to more pixels,
‘expanding the ground truth’

LIDC

Red: max
Blue: min 25
White: standard

FoggyBlob



Designing uncertainty representations with humans in mind

Data

A

Model

Uncertainty
Representation

Uncertainty representations
should clearly correspond to

Human

clear to the human.

intferactions between the model

and the data

The correspondence should be
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