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Abstract
Medical image segmentation modeling is a high-
stakes task where understanding of uncertainty is
crucial for addressing visual ambiguity. Prior work
has developed segmentation models utilizing prob-
abilistic or generative mechanisms to infer uncer-
tainty from labels where annotators draw a singu-
lar boundary. However, as these annotations can-
not represent an individual annotator’s uncertainty,
models trained on them produce uncertainty maps
that are difficult to interpret. We propose a novel
segmentation representation, Confidence Contours,
which uses high- and low-confidence “contours” to
capture uncertainty directly, and develop a novel
annotation system for collecting contours. We con-
duct an evaluation on the Lung Image Dataset Con-
sortium (LIDC) and a synthetic dataset. Our results
show that Confidence Contours provide high rep-
resentative capacity without requiring significantly
higher annotator effort. Moreover, segmentation
models trained on them can produce significantly
more interpretable uncertainty maps than models
with specialized mechanisms for uncertainty, and
they can learn Confidence Contours at the same
performance level as singular annotations. We con-
clude with a discussion on how we can infer regions
of high and low confidence from existing segmen-
tation datasets.

1 Introduction
Increasingly sophisticated general segmentation models such
as U-Net [Ronneberger et al., 2015] and DeepLab [Chen et
al., 2016] have become widely adopted for medical imag-
ing problems [Lei et al., 2020]. Despite their high expres-
sive power and adaptability, these models often fail to repre-
sent contextual uncertainty in medical images, as evidenced
by poorly visible structure borders, abnormally shaped struc-
tures, and other ambiguous features [Armato et al., 2011;
Menze et al., 2015]. Models that fail to provide accurate
uncertainty information can impede human users’ ability to
assess correctness for downstream decision-making [Chen et
al., 2021a; Gordon et al., 2021]. To address the shortcom-
ings of conventional segmentation models, a growing body
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Figure 1: The two steps of the process for producing Confidence
Contours annotations, demonstrated on a sample from LIDC.

of work uses elicitive, multi-candidate, and generative meth-
ods to train uncertainty-aware models to produce continuous-
valued uncertainty maps or to generate ensembles of candi-
date segmentations [Gawlikowski et al., 2021]. These models
infer uncertainty from conventional singular annotations for
images, where each annotator draws just a single boundary
around the positive-class region.

While such models provide spatial uncertainty distribu-
tions, they are not able to communicate the optimal thresh-
olds for which medical decision-makers can make reliable
and informed decisions. Humans have cognitive biases when
interpreting uncertainty in the form of probability distribu-
tions [Tversky and Kahneman, 1974]. Without the guidance
of thresholds on these distributions, humans may make inac-
curate inferences. Domain researchers who have attempted to
apply uncertainty-aware models have reported similar chal-
lenges for reliable interpretation [Jungo and Reyes, 2019;
Ng et al., 2020].

Instead of a model-centric approach that utilizes complex
model mechanisms to infer uncertainty from singular bound-
ary annotations, we propose a data-centric approach [Hamid,
2022] in which models are trained on a novel annotation rep-
resentation that directly communicates uncertainty. In this
paper, we present Confidence Contours (CCs), a novel se-
mantic segmentation annotation representation that involves
a pair of annotations—one forming a ‘contour’ of high con-
fidence (the ‘min’) and another forming a ‘contour’ of low
confidence (the ‘max’). We also introduce a procedure for
annotators to create CCs (Figure 1).

We conducted an annotation study to create segmentations
on two datasets: the Lung Image Dataset Consortium (LIDC)
with expert annotators (medical students), and a synthetic



dataset, FoggyBlob, with non-expert annotators. We investi-
gate three aspects of CCs: the representative capacity of CCs,
the usability of our annotation tool and procedure, and the
ability for existing general segmentation models to learn to
predict CCs. We evaluate representative capacity by analyz-
ing how well a CC annotation encompasses reference sets of
singular annotations. We evaluate the usability of our anno-
tation system through a survey and by measuring the time
taken to complete annotation tasks. Moreover, we train 300+
general segmentation models with varying architectures to ro-
bustly investigate how CC labels can be learned and predicted
in modeling.

We find that, compared to a baseline constructed using
singular annotations, CCs had lower representation error
(−19.9% for LIDC and −41.8% for FoggyBlob, statistically
significant)—reflected through the ability to encompass a set
of singular annotations. Through a survey, users of our tool
reported an increase in task load related metrics while creat-
ing CCs; however, no task load metric saw more than a 1.3
point increase on the 10-point Likert scale used. Examining
logs of our annotation tool, we found that the time taken to
produce a min and max contour (44 sec for LIDC; 45 sec for
FoggyBlob) was unsurprisingly more than the time taken to
create a singular annotation (27 s for LIDC; 25 s for Fog-
gyBlob), but not as much as double. Finally, we find that
general segmentation models are capable of learning to pre-
dict CC annotations to a similar degree of proficiency as stan-
dard singular annotations. We discuss why predicting CC an-
notations is desirable—by providing discrete thresholds over
uncertainty, CCs may reduce the cognitive load compared to
continuous uncertainty representations, leading to more inter-
pretable uncertainty.

2 Related Work
2.1 Medical uncertainty modeling
Existing work to address uncertainty representation in seg-
mentation is dominated by model-centric approaches, which
retain singular annotation data (used in standard segmenta-
tion training) but develop novel modes of model interaction,
design, and training. Elicitation-based approaches alter inter-
nal or external network states, such as through dropout [Gal
and Ghahramani, 2015; Eaton-Rosen et al., 2018] or test-
time augmentation [Wang et al., 2018], and composite the
variation in predictions into an uncertainty map. Multi-
candidate approaches [Rupprecht et al., 2016; Ilg et al.,
2018] develop specialized training procedures to allow mod-
els to predict multiple hypotheses. Generative approaches,
on the other hand, use probabilistic sampling and allow for
the production of a theoretically infinite quantity of candi-
date predictions [Kohl et al., 2018; Baumgartner et al., 2019;
Monteiro et al., 2020].

Surveys of uncertainty modeling in medical segmenta-
tion find that lack of contextualization and interpretability
pose serious problems for the application of these approaches
in practice. While uncertainty predictions perform well in
dataset-wide metrics, they may not be coherent on a per-
subject basis [Jungo and Reyes, 2019]. Pixel/voxel-wise un-
certainty measures produced by such models are biased to-

wards producing ‘smooth’ uncertainties within local regions,
which lead to non-negligible errors [Jungo et al., 2020].
Moreover, it is difficult to ascertain the uncertainty over com-
plete structures rather than over voxels, which can have high
variation within structures [Vasiliuk et al., 2022]. It has also
been shown that per-voxel uncertainty measures in elicita-
tion approaches can be highly dependent on modeling pa-
rameters rather than inherent uncertainty, and therefore pose
challenges for clear interpretation [Whitbread and Jenkinson,
2022].

At the same time, researchers in medicine emphasize that
machine learning applications cannot be purely computa-
tional and need to be designed to provide interpretations in
addition to predictions [Chen et al., 2021a]. To foster effec-
tive human-AI collaboration, such interpretations need to take
into account and support medical decision-makers’ cognitive
processes [Rundo et al., 2020; Antoniadi et al., 2021]. To de-
velop models that learn to predict more concrete and transpar-
ent signals, recent work has proposed using cross-annotator
disagreement as a directly-given measure of aleatoric uncer-
tainty, which does not require models to implicitly infer dis-
tributions [Hu et al., 2019; Fornaciari et al., 2021]. We take
inspiration from such work in our data-centric approach.

2.2 Capturing uncertainty in annotation
On the annotation side, researchers have explored new de-
signs for annotation systems and workflows that can capture
uncertainty during the annotation process and improve con-
sistency. Prior research has found traditional single-label an-
notation to be insufficient for identifying uncertainty in anno-
tations, with proposed improvements including simple adjust-
ments such as allowing multiple answers from each annota-
tor [Jurgens, 2013], or asking for self reported confidence dis-
tributions over the set of answers [Chung et al., 2019; Collins
et al., 2022]. Others instead view the concept of fixed answer
choices to be itself deficient. Some researchers propose the
use of rationales as answers [Donahue and Grauman, 2011;
McDonnell et al., 2016], while others propose open-ended
answers that are then clustered or taxonomized [Kairam and
Heer, 2016; Chang et al., 2017]. Finally, some have proposed
more middle ground solutions in the form of new annota-
tion representations, such as ranges in scalar rating annota-
tion [Chen et al., 2021b]. Instead of asking for confidence or
uncertainty via a question separate from the annotation itself,
range annotations enable annotators to directly convey uncer-
tainty calibrated to their annotation. This approach requires
relatively low effort while also improving consistency in an-
notations. With Confidence Contours, we engage with un-
certainty through a similar lens, where annotators are directly
conveying uncertainty by providing a “range” annotation in
two dimensions over an image.

3 Proposed Approach
3.1 Confidence Contours
In the standard segmentation annotation paradigm, singular
masks for model training are derived by aggregating anno-
tations made by multiple annotators. On the other hand, to



Figure 2: Several sample high-disagreement images from LIDC.
Disagreement follows a “min/max” structure: while most annota-
tions cover a shared region, some annotations extend in concentrated
regions. Each colored annotation represents a singular boundary an-
notation made by a different annotator.

produce Confidence Contour (CC) annotations, a single an-
notator provides two annotation ‘contours’: a ‘min’ contour
and a ‘max’ contour. The min contour is the set of pixels in
the positive class with high confidence. The max contour is
the set of pixels in the positive class with at least low confi-
dence, and therefore spatially encompasses the min contour.
Intuitively, the min represents what is ‘definitely’ in the pos-
itive class, and the max what is ‘possibly’. It follows that
the region ‘outside’ of the max (¬ max) represents the set of
pixels in the negative class with high confidence. The region
spatially ‘between’ the min and the max contours specifies the
range of theoretically plausible singular annotations, and can
be conceptualized as spatial bounds on the ‘true’ distribution
of all singular annotations. In cases where there is no ambigu-
ity, the min and the max contours are equivalent and behave
as singular annotations; therefore, singular annotations can
be conceptualized as a subset of CC annotations. We formal-
ize this in Section 5.1. We use CCs on a binary segmentation
problem in this paper for simplicity, in which each pixel be-
longs to either a positive or negative class, although it can be
trivially adapted for multi-class segmentation problems.

3.2 Annotation process
Our annotation interface extends that of traditional singular
annotation. Annotators are given a poly-line tool that they
use to draw polygon bounds indicating a segmentation. Re-
gions drawn by the poly-line tool can be edited by “adding”
or “subtracting” from the current segment region.

To produce CC annotations, annotators first draw a min
contour. Annotators can adjust the min contour region un-
til they are satisfied. Next, annotators press a button to make
a copy of the min contour as the initial state of the max con-
tour. Annotators then progressively add regions of low con-
fidence to enlarge the max contour (Figure 1). Restated, the
max contour is defined in terms of spatial additions to the min
contour. This ordering of steps in this process reflects the
nature of disagreement in many medical segmentation tasks:
disagreement is concentrated in ‘controversial’ regions con-

Figure 3: Samples from the FoggyBlob dataset (left); composited
maps of singular annotations obtained for that image (center); and
CC annotations (right). Individual annotators’ CC annotations gen-
erally reflect the distribution of disagreement in the composited sin-
gular annotation maps.

cerning the inclusion or exclusion of particular ambiguous
structures (Figure 2).

4 Experiments
4.1 Datasets
We assembled two datasets of images to conduct our evalua-
tion experiments of Confidence Contours (CCs): a subsample
from the Lung Image Database Consortium (LIDC) and Fog-
gyBlob, a custom synthetic dataset.

LIDC contains clinical thoracic CT scans of pulmonary
nodules with 2–4 annotations from professional radiologists
for each image. Irregularities in the size and shape of pul-
monary nodes can be a strong indicator for lung cancer and
other conditions [Loverdos et al., 2019]. This makes LIDC
an effective demonstrative case of an ambiguous and high-
stakes problem, since cumulative disagreements between an-
notators over the inclusion or exclusion of particular crucial
structures can substantively influence the diagnosis. We only
consider ‘windows’ in which a pulmonary node is guaran-
teed to be present to focus strictly on segmentation rather
than localization or detection, which we consider to be a
separate problem. This separation is common in medical
imaging diagnosis problems where there is a large discrep-
ancy in scale between the image size and the annotated ob-
ject(s) [Li et al., 2022]. For our experiments, we sampled the
400 highest-disagreement windows in LIDC, with disagree-
ment measured as the intersection over union (IoU) between
all dataset-provided annotation masks.

The FoggyBlob dataset (Figure 3) is a synthetic dataset
we created to simulate the challenges of segmenting in am-
biguous contexts for layperson annotators. Each image is
composed of a prominent centered mass and multiple blurred
‘branches’. The annotator’s task is to annotate the central
mass, and therefore implicitly to decide whether or not cer-
tain ‘branches’ are fit for inclusion. FoggyBlob replaces
the technical knowledge required for making such inclu-
sion/exclusion determinations in medical segmentation prob-



lems with human intuition for objectness.

4.2 Annotation study
We recruited 30 undergraduate students majoring in the bi-
ological sciences to each annotate 40 images with CCs and
40 images with the singular method as a baseline. Every im-
age was annotated by 3 different annotators, producing 3 CC
and 3 singular annotations. Annotators were briefed and eval-
uated on the relevant radiological and medical background
before annotating. While our annotators were students, we
consider them expert annotators as the quality of our anno-
tations generally matched that of the LIDC dataset produced
by radiologists. There was no statistically significant differ-
ence between the level of disagreement comparing our an-
notations and LIDC annotations versus comparing LIDC an-
notations with each other. This similarity in skill level may
be explained by our task only being the simpler segmentation
rather than the more challenging localization task (subsec-
tion 4.1).

The same study procedure was used for the FoggyBlob
dataset with 15 students from general areas of study.

To counteract bias from learning effects, we counterbal-
anced the order of annotation method (singular and Confi-
dence Contours) for annotation studies on both datasets. All
participants were compensated $17 per hour, higher than the
local minimum wage at the time of study. Of 45 total anno-
tators, 69% identify as female and 31% identify as male. In
total, we collected 3,600 annotations across 600 images1.

After annotating the assigned image set for each annotation
method, annotators completed a NASA TLX questionnaire
on task load [Hart and Staveland, 1988]. The survey recorded
the following dimensions on a 10-point Likert scale: mental
demand, physical demand, temporal demand, performance,
effort, and frustration. We also measured the time annotators
spent per annotation through logging in our annotation tool.

4.3 Modeling study
We also explored whether CCs can be learned effectively by
a variety of downstream segmentation models. Conceptually,
these models should predict both the min and the max con-
tour masks simultaneously. While there are several methods
to do so, we simply train models to predict a two-channel
mask for convenience. Therefore, any general segmentation
model can be trivially modified to support CC labels. The op-
timization objective for a model M using loss function L on
CC-annotated data becomes:

min
M

[L(Mmin(x), ymin) + L(Mmax(x), ymax)]

We evaluated performance across four model architec-
tures commonly used for medical segmentation: U-Net [Ron-
neberger et al., 2015], attention U-Net [Oktay et al., 2018],
DeepLab [Chen et al., 2016] with a MobileNetV2 back-
bone [Sandler et al., 2018], and PSPNet [Zhao et al., 2016].
To account for variability in training outcomes, we perform
grid search over hyperparameters for each architecture: for
U-Net and attention U-Net we tested configurations of batch

1We will make an anonymized dataset publicly available upon
acceptance

size ∈ {8, 16, 32, 64}, initial filters ∈ {8, 16, 32}, and
encoder-decoder pathway block count ∈ {2, 3, 4, 5}; for
DeepLab – batch size ∈ {8, 16, 32, 64}, filters ∈ {8, 16,
32}; for PSPNet – batch size ∈ {8, 16, 32, 64}, initial filters
∈ {8, 16, 32}, and block count ∈ {1, 2, 3}. Model archi-
tectures were scaled down to accommodate for our smaller
dataset and image size. For each architecture and hyperpa-
rameter set, we train one instance on singular annotations
and another on CC annotations until convergence. We use
the Adam optimizer and the dice loss optimization objective
across all instances. Following standard practice, reference
masks are generated from singular annotations using 50%
(majority) consensus; CC annotations are not aggregated (i.e.,
each image is associated with multiple labels). We employ an
extensive augmentation pipeline, including affine transforma-
tions, blurring, and sharpening.

5 Results and Analysis
5.1 Representative Capacity
One function of Confidence Contours (CCs) is as a means
for one annotation to encompass the range of multiple singu-
lar annotation responses we might otherwise observe across
a group of different annotators. Existing work [Cheplygina
and Pluim, 2018] shows that disagreements among annota-
tors are often centered in regions of visual ambiguity, which
cast uncertainty on the identification of relevant structures in
the image. CC annotations should similarly be drawn to ac-
commodate the same sources of uncertainty. Additionally, in
other annotation modalities, it has been shown that single an-
notators can often anticipate the distribution of responses of
their peers [Chung et al., 2019].

We can view any segmentation representation s as a parti-
tion of an image into three types of points: s+—points cer-
tainly associated with the subject-of-interest, s−—points cer-
tainly not associated with the subject-of-interest, and s?—
points that may or may not be associated with the subject-
of-interest. Under this view, we can intuitively see that one
segmentation sa bounds another sb if s+a ⊆ s+b and s−a ⊆ s−b .
Of course, in practice, segmentation representations are rarely
expected to perfectly bound another. To understand represen-
tative capacity, we want to quantify the error at which a seg-
mentation fails to bound another. To do this we define the
following error metrics:

L+(sa, sb) = |{∀p : p ∈ s+a ∧ p /∈ s+b }|

L−(sa, sb) = |{∀p : p ∈ s−a ∧ p /∈ s−b }|
Intuitively, L+ measures the degree to which s+a fails to be
a subset of s+b (error in sa serving as a lower bound for sb,
or put simply, “underflow”) and L− measures the degree to
which s−a fails to be a superset of s−b (error in sa serving as an
upper bound for sb, “overflow”). Together, they holistically
represent error to which sa bounds sb.

Of course, more practically, we would like to quantify the
representative capacity of a new segmentation representation
sa in relation to a reference set of segmentations S. This can
be done by computing the expected error2:

2We use ¬s− to denote s? ∪ s+.



Dataset L+ L−

CC Base CC Base

LIDC *0.1416 0.1659 *0.1209 0.1615
FoggyBlob *0.0837 0.1249 *0.0622 0.1259

Table 1: Mean underflow and overflow across all samples in the
LIDC and FoggyBlob datasets. *indicates statistically significant
(p < 0.05) compared to the baseline.

Dataset Singular Min Max

LIDC 0.7296 *0.6035 0.7301
FoggyBlob 0.6261 *0.5485 *0.5555

Table 2: Disagreement, measured as the mean pairwise discrete
Frechét distance in pixel space, scaled by the mean longest chord
in the annotation for approximate bounding, within groups of sin-
gular annotations, min contours, and max contours. * indicates sta-
tistically significant (p < 0.05) decrease compared to the singular
annotations’ disagreement using relative t-test.

L+(sa, S) = Es∈S [L
+(sa, s)/|s+a ∪ s+|]

L−(sa, S) = Es∈S [L
−(sa, s)/|¬s−a ∪ ¬s−|]

Note that we introduce a normalization factor in the above
expressions to account for the different sizes of s+; this also
bounds both metrics between 0 and 1 (inclusive).

We calculate the representative capacity of CCs (L+
CC and

L−
CC), using our singular annotations as a reference set. As a

baseline, we compute the representative capacity of singular
annotations (L+

base and L−
base) against the same reference set.

The data for evaluating singular annotations is constructed by
taking a held-out annotation that was not used in the reference
set.

We find that, compared to the baseline, CCs demon-
strate more representative capacity, as evidenced by statisti-
cally significantly lower underflow and overflow across both
datasets (Table 1). This representative capacity is clearly vi-
sualized in Figure 4. We also found that, for LIDC and Fog-
gyBlob respectively, 42.96% and 50.16% of instances had
L+ ≤ 0.05 (a trivial level of error) and 40.20% and 45.45%
of instances had L− ≤ 0.05. In addition to these observa-
tions, we found that for individual instances sa experience
less overflow than underflow (L−(sa) ≤ L+(sa)) to a sta-
tistically significant degree (p = 0.0236 < 0.05 for LIDC,
p = 0.0158 < 0.05 for FoggyBlob) for LIDC and Foggy-
Blob respectively.

Moreover, we explored whether the degree of uncertainty
in CCs correlates with the uncertainty observed from dis-
agreements in sets of singular annotations. For each im-
age, this is calculated as |s?CC| a single CC annotation and
E[|¬s−Base|] − E[|s+Base(x)|] for an ensemble of singular anno-
tations. We find that there is a statistically significant corre-
lation between these metrics across both LIDC (ρ = 0.5868,
p < 0.001) and FoggyBlob (ρ = 0.4343, p < 0.001).

These results suggest that s?CC represents bounds on the
range of singular annotations; that is, we would expect a sin-
gular annotation drawn by some annotator to fall within s?CC.
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Figure 4: Annotations from the LIDC (top) and FoggyBlob (bottom)
datasets. The min (max) annotations are shown in blue (red), and
ensembles of singular annotations are shown in dotted white.

Overall, the results suggest that a single CC annotation rep-
resents many uncertainty-relating structural properties across
multiple singular annotations.

As another dimension of representative capacity, we eval-
uate how consistently annotators create the upper and lower
bounds. Given that annotator disagreement has been shown
to have strong relationships with sources of structural vi-
sual uncertainty, we use disagreement as a proxy for CCs’
ability to represent uncertainty. We compute the disagree-
ment between a set of annotations as the average pairwise
discrete Frechét distance, a common measure of curve simi-
larity. [Wylie, 2013]. In choosing a particular measurement,
we are primarily concerned with the annotator behavior on
the inclusion or exclusion of particular ambiguous structures
along the surface of the curves. However, area-based IoU
measurements inflate the role of unambiguous regions of high
agreement, so we use Frechét distance instead. Across both
datasets, we observe a statistically significant reduction in
disagreement between min contours as opposed to singular
annotations (Table 2). For LIDC, we find no statistically sig-
nificant difference between disagreement between max con-
tours and singular annotations, whereas we do for FoggyBlob.
This is possibly due to the synthetic nature of the FoggyBlob
dataset. On the other hand, in real-world datasets, different
annotators may disagree on whether an ambiguous structure
should be included into the max contour. In general, we find
that annotators tend to agree more on regions of high confi-
dence than regions of low confidence.

5.2 User Interaction
Annotators generally report that producing singular annota-
tions requires lower overall load than producing CCs (Ta-
ble 3). This is expected because creating CCs requires phys-
ically more user input than the singular method. Notably,
however, annotators did not experience statistically signifi-
cant differences in self-perceived performance level across
both tasks (p < 0.05), suggesting that CC annotation is learn-
able. Moreover, there are no statistically significant differ-
ences between the two annotation methods except in the men-
tal demand and frustration dimensions for FoggyBlob. This



Dimension LIDC FoggyBlob
Singular CC Singular CC

Mental Demand 3.7 *4.9 3.3 *4.6
Physical Demand 2.7 3.3 3.9 3.7
Temporal Demand 4.2 *4.9 5.0 5.5
Performance 6.9 6.9 6.8 6.9
Effort 4.8 *5.7 5.0 5.1
Frustration 3.0 *4.2 2.7 *4.0

Table 3: Average annotator responses across six dimensions and two
datasets on the experience annotating using the singular and the CC
methods, evaluated on a 10 point scale (1=“very low”, 10=“very
high”). * indicates a statistically significant relationship, measured
with a relative t-test by annotator.

suggests that the significance of task-load differences may be
dependent on the complexity of the context. Lastly, the ab-
solute magnitude of the differences between singular and CC
annotations are at most 1.3 points out of a 10-point scale in
all dimensions.

We measure the average time taken to produce CCs versus
singular annotations after the first 20 annotations, to account
for the period where the annotator is learning the tool and
task. On average, annotators spent 27 sec to create a sin-
gular annotation and 44 sec to create a CC annotation per
image in LIDC. For FoggyBlob, the time spent was 25 sec
and 45 sec, respectively. Across all annotators, the annotation
time for each sample using CCs is 68.50% and 75.32% more
than using the singular method for the LIDC and FoggyBlob
datasets, respectively. Thus, having one annotator create a CC
annotation is faster than having at least two annotators each
create a singular annotation and then use their disagreement
to infer uncertainty.

5.3 Modeling
A final question we investigate is whether general segmen-
tation models can successfully model CC annotations. To
adapt an existing general segmentation model to learn CCs,
we can map CC labels into two-channel masks (see Sec-
tion 4.3). A model trained on these masks conceptually
behaves as two segmentation models with heavily shared
weights, which predict the min (‘min-subnetwork’) and the
max (‘max-subnetwork’) contours separately. Each individ-
ual subnetwork is formally equivalent in structure to a general
model trained on singular-type annotations. In our model-
ing experiments, we observe no statistically significant dif-
ference (p > 0.05) between the converged loss of singu-
lar annotations and either the ‘min-subnetwork’ or the ‘max-
subnetwork’, across all 156 (48 + 48 + 12 + 48) modeling
trials. This shows that it is not more difficult for a wide range
of general segmentation models to learn to predict CC labels
than singular ones.

While we observe no performance losses when training
on CCs or similar labels, we experience significant improve-
ments in the interpretability of the uncertainty predictions.
Figure 5 visualizes predictions from different models across
multiple samples from LIDC. Rather than predicting singular
annotations, which do not provide explicit information about

uncertainty, models trained on CCs explicitly report areas of
high and low annotator confidence. Moreover, as opposed
to previously mentioned model-based uncertainty map gen-
eration methods (2.1) such as Bayesian segmentation which
produce ‘smooth’, unthresholded maps, our models’ discrete
predictions provide clearly interpretable uncertainty thresh-
olds. We note that while alternative approaches such as elic-
itation and candidate generation produce uncertainty repre-
sentations through aggregating multiple singular predictions
(a kind of “disagreement” uncertainty), using CCs reproduces
uncertainty as assessed by a single annotator (a kind of “am-
biguity” uncertainty).

6 Discussion
Greater representation of uncertainty range. We hypoth-
esize that Confidence Contours (CCs) enable annotators to
map wider regions of uncertainty than singular annotations,
which in turn allows models to access explicit learning sig-
nals in such ambiguous areas. This is suggested by our
observation that the average max annotation is larger than
the average singular annotation (+25.6% LIDC and +17.0%
FoggyBlob) coupled with the low overflow we see in Sec-
tion 5.1. Model-centric approaches to uncertainty represen-
tation can be broadly conceptualized as inferring a distribu-
tion of singular annotations from k sampled singular anno-
tations for each image. Dominant methods in the field are
such a case with k = 1. Alternative approaches that at-
tempt to train models on labels derived from multiple an-
notators’ singular annotations per image [Hu et al., 2019;
Fornaciari et al., 2021] use higher values of k. Such model-
centric approaches, then, still all receive positive learning sig-
nals only from labels produced near a high-certainty thresh-
old and only represent “sufficiently certain” uncertainty. CCs,
however, allow annotators to directly communicate both a
threshold for what is considered “certain” and a threshold for
what is considered “possible”.
Distinguishing sources of uncertainty. When annotators
use CCs over singular annotations, more of the uncertainty
in the dataset is accounted for directly within the struc-
ture and less of it is present in disagreements between an-
notators. This is suggested by our results finding that
the min and max contour have significantly reduced cross-
annotator disagreement than singular annotations, across all
datasets. Remaining disagreements between annotations are
more likely to result from irreducible ‘core’ annotator dis-
agreements [Kairam and Heer, 2016] such as perception or
medical background [Schaekermann et al., 2019].
Taking a data-centric approach. Broadly, our work pro-
vides a data-centric supplement to the dominantly model-
centric work in uncertainty representation in semantic seg-
mentation. We show that using data with explicit uncertainty
markings to train general models can directly produce more
interpretable uncertainty maps than training complex models
fitted with generative or probabilistic components on singu-
lar annotations, without loss of performance. In deployment
settings, it may be more feasible to adopt such an approach
to minimize the burden of infrastructure modification while
producing more diverse functionality.
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Figure 5: Examples from LIDC. Image: the original image data; Ground: original annotation data from LIDC, composited; Standard:
singular predictions from an attention U-Net trained on original LIDC annotations; CC: CC-style predictions of an attention U-Net trained
on our Confidence Contour annotations, (blue: min contour, red: max contour); PCC: CC-style predictions of an attention U-Net trained on
pseudo-CC data created inferred from ground LIDC annotations (Section 6); Bayesian: the uncertainty map from a Bayesian attention U-Net
with test-time dropout. We include the uncertainty map from Bayesian U-Net as an example of continuous uncertainty maps to illustrate
interpretability differences compared to CC-style predictions.

CC-compatible models from existing datasets. We have
observed that models predicting CCs have substantive inter-
pretability benefits, but it may be costly to re-annotate exist-
ing datasets with CCs. Can we approximate some of these in-
terpretability benefits before or without collecting CCs? We
also explore the inference of high- and low-confidence re-
gions from existing segmentation datasets with disaggregated
annotations. For a given set S of singular annotations, we
can define the intersection of all annotations as an approxi-
mate ‘min’ contour and the union as an approximate ‘max’
contour.

ymin =
⋂
s∈S

s, ymax =
⋃
s∈S

s

In experiments similar to that of 4.3, we find that general seg-
mentation models trained on these ‘intersection/union’-style
labels perform as well in training and validation performance
as models trained on aggregated labels. In this approach, dis-
agreement between annotations is used as a proxy for uncer-
tainty. We caution that this is not a replacement for directly-
provided annotations of uncertainty, given the previously dis-
cussed problem of limited uncertainty range representation,
as evidenced by the inhibited size of max contour predictions
in Figure 5. However, intersection/union predictions still ben-
efit from clearer interpretability: the thresholding provided
by CC-like representations can reduce cognitive burden com-
pared to understanding uncertainty maps and candidate en-
sembles.

7 Conclusion
Medical semantic segmentation is a particularly human-
involved application of modeling: domain experts annotate
the labels that models are trained on, and these models will
eventually produce predictions which will be used by medi-
cal decision-makers for patients. In this pipeline, it is impor-
tant not only to develop powerful models but to ensure that
such models are trained on data that effectively captures un-
certainty and that produce usable and informative predictions.
Our work explored how adopting a data-centric approach can
better accommodate the people on both ends of the modeling
pipeline—the annotators and the decision-makers. We pro-
posed Confidence Contours as an novel segmentation annota-
tion representation which explicitly and effectively marks un-
certainty. Confidence Contour annotations can be used with
general models to produce highly interpretable uncertainty
maps without loss of performance.

Ethical Statement
Existing work on uncertainty estimation in medical segmen-
tation produces uncertainty maps or candidates which are
difficult to interpret. Our work moves towards uncertainty-
reporting models whose uncertainty maps are easy to inter-
pret to humans. This may aid in understanding model respon-
sibility and trustworthiness when making jointly informed
medical decisions.
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